Heisenberg scaling with weak measurement: a quantum state discrimination point of view
نویسندگان
چکیده
We examine the results of the paper “Precision metrology using weak measurements” (Zhang et al. arXiv:1310.5302, 2013) from a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between coherent light and a spin one-half particle (or pseudospin) has a simple interpretation in terms of the interaction rotating the quantum state to an orthogonal one. To achieve this scaling, the information must be extracted from the spin rather than from the coherent state of light, limiting the applications of the method to phenomena such as cross-phase modulation.We next investigate the effect of dephasing noise and show a rapid degradation of precision, in agreement with general results in the literature concerning Heisenberg scaling metrology. We also demonstrate that a von Neumann-type measurement interaction can display a similar effect with no system/meter entanglement.
منابع مشابه
Exploring the implications of the laws and principles of quantum physics in the field of talent (quantum theory of talent)
The issue of talent-discovering is one of the most important issues in the field of education and research that has always been a concern for educational systems. Studying the issues of identifying and guiding talented students can illuminate a large part of the activities of the executors and practitioners in order to accomplish their mission effectively. On the other hand, quantum physics has...
متن کاملHeisenberg antiferromagnet
The results of a detailed histogram Monte-Carlo study of critical-fluctuation effects on the magnetic-field temperature phase diagram associated with the hexagonal Heisenberg antiferromagnet with weak axial anisotropy are reported. The multiphase point where three lines of continuous transitions merge at the spin-flop boundary exhibits a structure consistent with scaling theory but without the ...
متن کاملMagnetic and Superconducting Quantum Critical Behavior of Itinerant Electronic Systems
Quantum phase transitions occur at zero temperature as a function of some non-thermal parameter, e.g., pressure or chemical composition. In addition to being of fundamental interest, quantum phase transitions are important because they are believed to underlie a number of interesting low temperature phenomena. Quantum phase transitions differ from the classical phase transitions in many importa...
متن کاملQuantum Effects and Broken Symmetries in Frustrated Antiferromagnets
We investigate the interplay between frustration and zero-point quantum fluctuations in the ground state of the triangular and J1−J2 Heisenberg antiferromagnets, using finitesize spin-wave theory, exact diagonalization, and quantum Monte Carlo methods. In the triangular Heisenberg antiferromagnet, by performing a systematic size-scaling analysis, we have obtained strong evidences for a gapless ...
متن کاملWeak Force Measurement in Bistable Optomechanical System
One of the main milestones in the study of opto-mechanical system is to increase the sensitivity of weak forces measurement up to the standard quantum limit. We have studied the detection of weak force under a bistable condition in red detuned regime. In this case, dynamics of the system behaves asymptotically similar to stationary state and applying external force affects phase and fluctuation...
متن کامل